首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64338篇
  免费   5537篇
  国内免费   4925篇
化学   30242篇
晶体学   854篇
力学   4516篇
综合类   592篇
数学   11064篇
物理学   27532篇
  2024年   80篇
  2023年   587篇
  2022年   997篇
  2021年   1398篇
  2020年   1673篇
  2019年   1657篇
  2018年   1544篇
  2017年   1847篇
  2016年   2202篇
  2015年   1831篇
  2014年   2617篇
  2013年   4848篇
  2012年   3197篇
  2011年   3584篇
  2010年   2815篇
  2009年   4028篇
  2008年   4149篇
  2007年   4590篇
  2006年   3834篇
  2005年   3084篇
  2004年   2671篇
  2003年   2765篇
  2002年   2685篇
  2001年   2174篇
  2000年   2003篇
  1999年   1648篇
  1998年   1602篇
  1997年   945篇
  1996年   907篇
  1995年   829篇
  1994年   903篇
  1993年   636篇
  1992年   710篇
  1991年   462篇
  1990年   435篇
  1989年   328篇
  1988年   304篇
  1987年   301篇
  1986年   260篇
  1985年   233篇
  1984年   246篇
  1983年   137篇
  1982年   200篇
  1981年   185篇
  1980年   115篇
  1979年   151篇
  1978年   109篇
  1977年   90篇
  1976年   43篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The dependence of the EPR g-factors on the local structural parameter for a 4f11 configuration ion Er3+ in a trigonal crystal-field has been studied by diagonalizing the 364×364 complete energy matrices. Our studies indicate that the EPR spectra of the trigonal Er3+VK centers in KMgF3 and KZnF3 may be attributed to the translation of the cubic Kramers doublet Γ7. Furthermore, the EPR g-factors of the trigonal Er3+VK centers may be interpreted reasonably by the shifts ΔZ≈0.340 Å and ΔZ≈0.303 Å of the Er3+ ions toward the charge compensator VK along the C3 axis for the KMgF3:Er3+ and the KZnF3:Er3+ systems respectively.  相似文献   
102.
This article reviews the field of molecular simulations of thermoset polymers. This class of polymers is of interest in applications ranging from structural components for aerospace to electronics packaging and predictive simulations of their response is playing an increasing role in understanding the molecular origin of their properties and complementing experiments in the search for tailored materials for specific applications. It focuses on modeling and simulation of the process of curing to predict the molecular structure of these polymers and their thermomechanical response by all-atom molecular dynamics simulations. Results from Monte Carlo and coarse-grained simulations are briefly summarized. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 103–122  相似文献   
103.
The photochemical and photophysical properties of peripheral and nonperipheral zinc and indium phthalocyanines containing 7‐oxy‐3,4‐dimethylcoumarin synthesized were investigated in this study. 7‐Hydroxy‐3,4‐dimethylcoumarin ( 1 ) was synthesized via Pechmann condensation reaction and then the phthalonitrile derivatives [4‐(7‐oxy‐3,4‐dimethylcoumarino)phthalonitrile ( 2 ) and 3‐(7‐oxy‐3,4‐dimethylcoumarino)phthalonitrile ( 3 )] were synthesized by nucleophilic aromatic substitution. Phthalocyanine compounds containing coumarin units on peripheral ( 4 and 5 ) and nonperipheral ( 6 and 7 ) positions were prepared via cyclotetramerization of phthalonitrile compounds. All compounds' characterizations were performed by spectroscopic methods and elemental analysis. The phthalocyanine derivatives' ( 4–7 ) photochemical and photophysical properties were studied in DMF. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen and photodegradation quantum yields) properties of these novel phthalocyanines ( 4 – 7 ) were studied in DMF. They produced good singlet oxygen (e.g., ΦΔ = 0.93 for 7 ) and showed appropriate photodegradation (in the order of 10?5), which is very important for photodynamic therapy applications.  相似文献   
104.
The study is focused on the synthesis of a new Co(II) and Ni(II) metal complexes, which is synthesized by the reaction of the isatin 4‐aminoantipyrine Schiff base ligand with selected divalent Co(II) and Ni(II) ions and their possible applications as flame retardant additives in paint formulations for surface coating application. The prepared metal complexes were characterized using a combination of Fourier transform infrared, elemental analysis, proton nuclear magnetic resonance, 13C‐NMR spectra, and mass spectroscopy. The prepared Schiff base ligand metal complexes were physically added to alkyd paint formulation to give coating formulations at a laboratory scale and then applied onto plywood and steel panels using a brush. The ignitability and oxygen index values obtained indicated that the paint which contained the prepared Co(II) and Ni(II) metal complexes as additives exhibited very good flame retardant. The physical and mechanical characteristics of the coatings were studied in order to estimate any disadvantages due to the incorporation of the additives. It was discovered that the added substances did not impact the hardness, flexibility, and adhesion of the prepared coating films. The gloss of the paint formulation film was improved due to the incorporation of the aromatic ring into the formulation and the level of the oil percent.  相似文献   
105.
Na2FePO4F is a promising cathode material for a Na-ion battery because of its high electronic capacity and good cycle performance. In this work, first principle calculations combined with cluster expansion and the Monte Carlo method have been applied to analyze the charge and discharge processes of Na2FePO4F by examining the voltage curve and the phase diagram. As a result of the density functional theory calculation and experimental verification with structural analysis, we found that the most stable structure of Na1.5FePO4F has the P21/b11 space group, which has not been reported to date. The estimated voltage curve has two clear plateaus caused by the two-phase structure composed of P21/b11 Na1.5FePO4F and Pbcn Na2FePO4F or Na1FePO4F and separated along the c-axis direction. The phase diagram shows the stability of the phase-separated structure. Considering that Na2FePO4F has diffusion paths in the a- and c-axis directions, Na2FePO4F has both innerphase and interphase diffusion paths. We suggest that the stable two-phase structure and the diffusion paths to both the innerphase and interphases are a key for the very clear plateau. We challenge to simulate a nonequilibrium state at high rate discharge with high temperature by introducing a coordinate-dependent chemical potential. The simulation shows agreement with the experimental discharge curve on the disappearance of the two plateaus. © 2018 Wiley Periodicals, Inc.  相似文献   
106.
Two highly ordered isonicotinamide (INA)‐functionalized mesoporous MCM‐41 materials supporting indium and thallium (MCM‐41‐INA‐In and MCM‐41‐INA‐Tl) have been developed using a covalent grafting method. A surface functionalization method has been applied to prepare Cl‐modified mesoporous MCM‐41 material. Condensation of this Cl‐functionalized MCM‐41 with INA leads to the formation of MCM‐41‐INA. The reaction of MCM‐41‐INA with In(NO3)3 or Tl(NO3)3 leads to the formation of MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts. The resulting materials were characterized using various techniques. These MCM‐41‐INA‐In and MCM‐41‐INA‐Tl catalysts show excellent catalytic performance in the selective oxidation of sulfides and thiols to their corresponding sulfoxides and disulfides. Finally, it is found that the anchored indium and thallium do not leach out from the surface of the mesoporous catalysts during reaction and the catalysts can be reused for seven repeat reaction runs without considerable loss of catalytic performance.  相似文献   
107.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
108.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
109.
This paper is concerned with the mixed initial–boundary value problem for semilinear wave equations with complementary frictional dampings and memory effects. We successfully establish uniform exponential and polynomial decay rates for the solutions to this initial–boundary value problem under much weak conditions concerning memory effects. More specifically, we obtain the exponential and polynomial decay rates after removing the fundamental condition that the memory-effect region includes a part of the system boundary, while the condition is a necessity in the previous literature; moreover, for the polynomial decay rates we only assume minimal conditions on the memory kernel function g, without the usual assumption of g controlled by g.  相似文献   
110.
We extend the method of Pizzo multiscale analysis for resonances introduced in [5] in order to infer analytic properties of resonances and eigenvalues (and their eigenprojections) as well as estimates for the localization of the spectrum of dilated Hamiltonians and norm-bounds for the corresponding resolvent operators, in neighborhoods of resonances and eigenvalues. We apply our method to the massless Spin–Boson model assuming a slight infrared regularization. We prove that the resonance and the ground-state eigenvalue (and their eigenprojections) are analytic with respect to the dilation parameter and the coupling constant. Moreover, we prove that the spectrum of the dilated Spin–Boson Hamiltonian in the neighborhood of the resonance and the ground-state eigenvalue is localized in two cones in the complex plane with vertices at the location of the resonance and the ground-state eigenvalue, respectively. Additionally, we provide norm-estimates for the resolvent of the dilated Spin–Boson Hamiltonian near the resonance and the ground-state eigenvalue. The topic of analyticity of eigenvalues and resonances has let to several studies and advances in the past. However, to the best of our knowledge, this is the first time that it is addressed from the perspective of Pizzo multiscale analysis. Once the multiscale analysis is set up our method gives easy access to analyticity: Essentially, it amounts to proving it for isolated eigenvalues only and use that uniform limits of analytic functions are analytic. The type of spectral and resolvent estimates that we prove are needed to control the time evolution including the scattering regime. The latter will be demonstrated in a forthcoming publication. The introduced multiscale method to study spectral and resolvent estimates follows its own inductive scheme and is independent (and different) from the method we apply to construct resonances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号